基于共掺杂 Dy-Tb:YAG 晶体的全固态 黄光激光特性研究

李长磊^{1,2},姚文明^{1,2},陈建生^{1,2},田玉冰^{1,2},檀慧明^{1,2},刘文鹏³,张庆礼³,高静^{1,2*}

²中国科学院苏州生物医学工程技术研究所, 江苏省医用光学重点实验室, 江苏 苏州 215163;

³中国科学院安徽光学精密机械研究所,安徽省光子器件与材料重点实验室,安徽 合肥 230031

摘要 为提高激光上下能级的粒子反转速度,采用具有高声子能量的 YAG 晶体作为掺杂基质,通过多声子弛豫的 方式加速⁶H_{13/2}能级的粒子数消耗;同时引入与激光下能级能量相近的 Tb³⁺离子,实现 Dy³⁺:⁶H_{13/2}与 Tb³⁺:⁷F₄ 之间的共振能量转移,成功地减小了⁶H_{13/2}的能级寿命,首次获得了 582.1 nm 的黄光激光输出。通过对比 Dy: YAG 与 Dy-Tb:YAG 的荧光光谱,分析了 Tb³⁺离子掺入对激光上能级寿命的影响。

关键词 激光光学; 黄光激光; 半导体泵浦; Dy-Tb: YAG; 共振能量转移; 交叉弛豫

中图分类号 TN248.1 文献标识码 A

doi: 10.3788/CJL201946.1101008

All-Solid-State Yellow-Laser Characteristics Based on Co-Doped Dy-Tb:YAG Crystal

Li Changlei^{1,2}, Yao Wenming^{1,2}, Chen Jiansheng^{1,2}, Tian Yubing^{1,2}, Tan Huiming^{1,2}, Liu Wenpeng³, Zhang Qingli³, Gao Jing^{1,2*}

¹University of Science and Technology of China, Hefei, Anhui 230026, China;

² Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology,

China Academy of Sciences, Suzhou, Jiangsu 215163, China;

³Anhui Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China

Abstract A YAG crystal exhibiting high phonon energy is used as the doping matrix to accelerate the depopulation of the 6 H_{13/2} energy level by multi-phonon relaxation and improve the population inversion velocities of the laser upper and lower energy levels. Simultaneously, an energy transfer between $Dy^{3+} : {}^{6}$ H_{13/2} and $Tb^{3+} : {}^{7}$ F₄ is achieved by introducing Tb^{3+} ions exhibiting an energy level similar to that exhibited by the laser lower level; thus, the energy lifetime of 6 H_{13/2} is successfully reduced and the yellow laser output of 582.1 nm is obtained for the very first time. Furthermore, the effects of the Tb^{3+} ions on the lifetime of the laser upper energy levels are analyzed by comparing the Dy: YAG and Dy-Tb: YAG fluorescence spectra.

Key words laser optics; yellow laser; diode pumping; Dy-Tb:YAG; resonant energy transfer; cross relaxation OCIS codes 140.7300; 140.3380; 140.3480

1 引 言

全固态黄光激光器在生物医学仪器、光学存储、

精密测量、照明显示、玻色-爱因斯坦凝聚^[1]等领域 具有重要作用。尤其在生物分析与临床治疗中,黄 光激光是荧光染料的激发光,目前已成为流式细胞

收稿日期: 2019-06-10; 修回日期: 2019-07-08; 录用日期: 2019-07-15

基金项目:国家自然科学基金(61405236)、中国科学院联合基金(6141A01080302)、江苏省自然科学青年基金(BK20180220)、江苏省六大高峰人才项目(SWYY-285)

^{*} E-mail: owengaojing@126.com

仪^[2]与超分辨显微镜的标配光源^[3]。血红蛋白在黄 光波段具有很强的吸收峰,黄光激光在毛细血管扩 张及视网膜黄斑病变的临床治疗中发挥着重要作 用^[4-6]。因此,获得高效、稳定的黄光激光具有重要 的研究意义。

染料激光器可以直接产生黄光,是早期获得黄 光激光的主要方法。但其染料易退化、效率低、安全 性差等缺点制约了染料激光器的发展。目前获得全 固态黄光激光器的主要方法有双波长和频法^[7-8]、红 外光倍频法^[9-10]、基于拉曼散射效应的拉曼频移 法^[11]等。这些方法都是通过非线性频率变换,将易 获得的波长转换成黄光,但是对基频光的要求比较 高,转换效率低,激光器的结构复杂。

稀土离子 Dy³⁺的 ⁴F_{9/2}→⁶H_{13/2}能级跃迁可以 产生 580 nm 的荧光,是目前直接获得黄光激光最 具潜力的材料。1996年,Malinowski 等^[12]报道了 Dy:LiNbO₃晶体在可见光波段的荧光特性,研究了 不同浓度、不同温度条件下⁴F_{9/2}能级的荧光寿命,获 得了 750 nm 的激光输出;2010年,Fujimoto等^[13] 采用波长 398.8 nm 的 GaN-LD(Laser Diode)泵浦 掺 Dy³⁺离子的氟铝酸盐玻璃光纤,获得 10.3 mW 的 575 nm 黄光激光,斜效率为 17.1%,实现了黄光 激光的有效运转;2012年,Bowman等^[14]采用波长 为 447 nm 的 GaN-LD 泵浦 Dy:YAG 单晶,获得了 583 nm 的脉冲输出,平均功率为 150 mW;2013年, Metz 等^[15]以氟化物 LiLuF₄ 晶体作为 Dy³⁺离子的 掺杂基质,获得了约 7 mW 的 578 nm 黄光激光,斜 效率为 4%。

由于 Dy³⁺离子具有较低的受激发射截面且激 光下能级的粒子无法迅速地弛豫至基态,所以上述 报道的黄光激光只实现了脉冲输出,且功率较小、稳 定性差,在增加吸收效率与减小激光下能级 (⁶H_{13/2})寿命方面缺少深入研究和相应的改善措 施。德国汉堡大学 Bolognesi 等^[16]在氟化物中双掺 杂 Dy³⁺、Tb³⁺两种离子,通过共振能量转移的方式 减小了 Dy³⁺激光下能级的寿命,为提高黄光激光的 功率稳定性提供了新的思路,但是,目前使用该方法 所获得的激光功率较低,对影响激光输出稳定性的 因素没有深入研究。

本课题组在 2016 年,采用国产的 Dy: YAG 晶体,首次在国内获得了 583 nm 黄光激光输出^[17]。 在此基础上,本文以氧化物 YAG 为基质,研究了 Dy³⁺、Tb³⁺离子双掺杂的晶体的特性,通过有效的 泵浦与腔型设计,获得了 582.1 nm 的黄光激光,分 析了导致激光上下能级寿命淬灭的原因。这是国际 上 Dy-Tb:YAG 黄光激光输出的首次报道。

2 基本原理

镧系稀土元素镝具有较大的原子半径,容易失 去外层 2 个 6s 电子和次外层 5d 轨道上 1 个电子而 成为 Dy^{3+} 离子。稀土离子 Dy^{3+} 外层的 $5s^25p^6$ 轨道 被电子填满,对处于内层的 4f 电子起屏蔽作用,使 得 4f 电子受外界环境的影响较小。同时,基质的晶 体场打破了 Dy^{3+} 离子的跃迁选择定则,使未被填满 的 4f 电子发生组态内跃迁(4f-4f)、及组态间跃迁 (4f-5d),形成丰富的能级结构^[18-19]。

图 1 为 Dy³⁺ 与 Tb³⁺ 离子简化的能级跃迁示意 图。图中箭头向上的实线表示受激吸收的过程,箭 头向下的实线表示典型的能级跃迁,曲线箭头表示 非辐射弛豫过程。

图 1 Dy³⁺与 Tb³⁺离子双掺杂晶体的能级结构简图 Fig. 1 Energy level structural diagram of Dy³⁺ and Tb³⁺ co-doped crystal

在 Dy^{3+} 离子中,为了产生可见光范围的荧光, 辐射跃迁的初始能级能量要大于 20×10^3 cm^{-1[20]}。 由于电子受激跃迁至激发态时受到自旋反转的影 响, Dy^{3+} 具有较低的受激吸收截面。图 2 为Dy-Tb: YAG 的吸收光谱,由图可知最强的吸收峰位于紫外 波段(326/353/367 nm)。蓝光波段最强的吸收峰 为 447 nm,对应基态⁶H_{15/2}至⁴I_{15/2}能级的跃迁,基态 吸收截面在 10^{-21} cm²量级^[21-23]。

受激跃迁至⁴ $I_{15/2}$ 能级的粒子迅速无辐射弛豫 到亚稳态⁴ $F_{9/2}$,从图1可以看出,⁴ $F_{9/2}$ 能级与其邻近 的下能级⁶ $F_{1/2}$ 之间的能级间隔大于7×10³ cm⁻¹, 能够有效地抑制多声子弛豫,因此⁴ $F_{9/2}$ 能级的粒子 可以辐射跃迁至⁶ $F_{x/2}$ 和⁶ $H_{x/2}$ 能级。其中,黄光波段 最强的荧光峰为582.09 nm,对应⁴ $F_{9/2}$ →⁶ $H_{13/2}$ 的能

Fig. 2 Absorption spectrum of Dy-Tb: YAG crystal

级跃迁。这一过程同样受到电子自旋反转的影响, 使得 Dy³⁺ 激光具有低发射截面(10⁻²¹ cm²)^[24],且 激光下能级不能够迅速地弛豫至基态,因而具有较 长的辐射寿命^[25]。

为解决单掺 Dy³⁺ 激光中存在的上述问题,加快⁶H_{13/2}能级的弛豫速度,本实验从共掺杂离子和 基质选择两个方面对 Dy³⁺晶体进行优化。

首先,由于 Tb³⁺和 Dy³⁺离子的 4f 组态只相差 一个电子,且 Tb³⁺离子的⁷F₄ 能级与 Dy³⁺离子 的⁶H_{13/2}能级具有相近的能量,所以 Tb³⁺离子的引 入将引起这两个能级发生共振能量转移(ET), 即⁶H_{13/2}的部分能量通过共振的方式无辐射转移到 Tb³⁺离子的⁷F₄ 能级,从而减小 Dy³⁺激光下能级的 辐射寿命,实现粒子数的快速反转分布。其过程如 图 1 中 ET2 所示。

此外,氧化物晶体的声子能量在 600 ~ 1000 cm⁻¹范围内,是氟化物晶体的 2 倍^[26],考虑 到⁴F_{9/2}→⁶H_{13/2}为非基态跃迁,所以 YAG 基质的高 声子能量将通过多声子弛豫的方式加速⁶H_{13/2}能级的寿命淬灭,使激光下能级上的粒子迅速地非辐射 弛豫至基态。

3 实验过程

3.1 实验设计

本实验所用的泵浦源由 NICHIA CORPORATION的单管LD及相关电路模块组装 而成,波长范围为445~448 nm,最大输出功率为 2.5 W。由于YAG为各向同性的晶体,其荧光光谱 与泵浦光的偏振方向无关,所以实验选用两个型号 相同的LD,通过偏振合束原理提高泵浦功率,弥补 因低吸收截面而造成的低吸收效率。其中LD1 水 平放置(p偏振),LD2 垂直放置(s偏振)。

直接发射的 LD 快轴与慢轴的发散角分别为

30°和10°,因此输出光斑为长条状。偏振合束后,泵 浦光的大部分能量会聚在光斑的交叠区域,可以改 善泵浦光斑的形状。偏振合束 LD 泵浦 Dy-Tb: YAG 的实验装置如图3所示。

图 3 偏振合束 LDs 泵浦 Dy-Tb: YAG 晶体的实验装置图 Fig. 3 Experimental setup of Dy-Tb: YAG crystal pumped by LDs with polarization beam coupling

实验采用平凹腔结构,前腔镜 M1 为平面镜,输 出耦合镜 M2 为凹面镜,曲率半径为 50 mm,腔长为 30 mm。通过仿真分析,可得振荡光的束腰位于前 腔镜附近,束腰半径为 67 μ m。因此,实验选用焦距 为 60 mm 的单透镜将合束后的泵浦光聚焦至晶体 内部,利用激光光束轮廓仪(NanoScan V2, Ophir Photonics)测得泵浦光经透镜变换后实际束腰尺寸 为 33 μ m×44 μ m,能实现泵浦光与振荡光的良好 匹配,泵浦波长及聚焦后的束腰光斑如图 4 所示。

图 4 GaN-LD 的输出波长及聚焦后的束腰光斑

Fig. 4 Output wavelength and focused waist spot of GaN-LD

本实验中,晶体尺寸为 3 mm×3 mm×15 mm, 且前端面镀有对泵浦光和振荡光增透的膜,后端面的 膜系对振荡光增透、对泵浦光高反。 Dy^{3+} 与 Tb^{3+} 离 子的掺杂浓度(原子数分数)分别为 2%和 0.8%。平 面镜 M1 作为前腔镜,其左右端面都镀有对泵浦光增 透的膜(447 nm,T>99.8%),同时右端面镀有对振荡 光高反的膜(582 nm,R>99.8%)。平凹镜 M2 作为 输出耦合镜,凹面镀有对振荡光(582 nm)部分透过的 膜系,透过率分别为 0.5%、1%、2%。

3.2 实验结果

图 5 为在泵浦功率为 4.6 W,输出镜透过率为

2%的条件下获得的 Dy-Tb: YAG 的黄光激光输出, 使用光纤光谱仪(Ocean optics, HR4000, 200~ 660 nm,精度 0.1 nm)测得波长为 582.1 nm。

图 5 Dy-Tb:YAG 的黄光激光输出波长及拍摄图 Fig. 5 Picture and output wavelength of yellow laser of Dy-Tb:YAG

双掺 Dy-Tb:YAG 晶体没有实现黄光激光的稳定输出,利用 THORLABS 公司的 DET10A/M 型光电探测器与 Agilent 公司的 MSO-X-3024A 型示 波器(200MHz,4 GSa/s)测得的输出功率随时间的 变化曲线如图 6 所示。由图可知输出功率受到调制,表现出无规则的"自脉冲"现象。

图 6 利用光电探测器测得的 Dy-Tb:YAG 输出强度 随时间的变化曲线

Fig. 6 Temporal variation of the output intensity of Dy-Tb: YAG measured by photodetector

4 分析与讨论

为分析造成激光输出不稳定的因素,本实验利用447 nm的LD作为激发光,在相同实验条件下分别测试单掺 Dy³⁺离子(原子数分数为2%)与双掺 Dy³⁺、Tb³⁺离子(原子数分数分别为2%、0.8%)晶体的荧光光谱。通过对比两种晶体荧光强度的变化,分析晶体内部粒子的作用过程对激光上下能级 寿命的影响。

4.1 共振能量转移

如图7所示,相比Dy:YAG的荧光曲线,Dy-

Tb: YAG 在 582 nm 处的荧光峰强度有所提高, 即⁴F_{9/2}→⁶H_{13/2}的跃迁增强,表明 Dy³⁺:⁶H_{13/2}与 Tb³⁺:⁷F₄能级之间发生了预期的共振能量转移。

图 7 Dy: YAG 与 Dy-Tb: YAG 在560~586 nm 之间的 荧光对比

Fig. 7 Fluorescence comparison of Dy: YAG and Dy-Tb: YAG at 560-586 nm

但是,在如图 8 所示的 477 nm(⁴F_{9/2}→⁶H_{9/2}) 与 761 nm(⁴F_{9/2}→⁶H_{15/2})处,双掺晶体的荧光峰强 度有所减小,表明 Tb³⁺的引入减小了 Dy³⁺:⁴F_{9/2}的 能级 寿命;同时, Dy-Tb: YAG 的光谱分别在 486 nm、543 nm、592 nm、622 nm 处产生了新的荧 光峰,由于 Tb³⁺的吸收峰值为 380 nm 和 485 nm^[27],而本实验所采用的 447 nm 泵浦波长与 之不匹配,说明在 Dy³⁺:⁴F_{9/2}与 Tb³⁺:⁵D4 能级之 间也发生了共振能量转移。如图 9 所示,四个峰值 分别 对应 Tb³⁺离子的⁵D4 →⁷F6、⁵D4 →⁷F5、⁵D4 →⁷F4、⁵D4→⁷F3 四个典型的能级跃迁过程,其中 543 nm处的荧光强度最强。激光上能级的能量转 移减小了⁴F_{9/2}的能级寿命,从而影响粒子数的反转 速度,导致激光输出不稳定。

4.2 交叉弛豫

图 10 为使用光纤光谱仪(Ocean optics, HR4000,600~1100 nm,精度 0.1 nm)测得的单掺 Dy³⁺离子晶体与双掺 Dy³⁺、Tb³⁺离子晶体的荧光 光谱对比图,由图可知,Dy-Tb:YAG 在895 nm 和 972~992 nm 处的荧光强度增大,根据能级谱线图 可知,这两个峰值分别对应 Dy³⁺离子中⁶F_{7/2} →⁶H_{15/2}和⁶H_{5/2}→⁶H_{15/2}的能级跃迁。这一结果表 明 Tb³⁺的引入增大了晶体内离子的浓度,导致 Dy³⁺离子间的距离减小,增强了交叉弛豫过程。具 体过程如图 1 所示,处于亚稳态和基态的两个 Dy³⁺ 离子之间进行无辐射能量交换(通过吸收、辐射额外 声子等方式),同时进入中间激发态的

图 8 Dy:YAG 与 Dy-Tb:YAG 分别在不同波段的荧光对比。 (a) 464~482 nm,插图为 477 nm 处的放大图;(b) 750~765 nm,插图为 761 nm 处的放大图 Fig. 8 Fluorescence comparison of Dy:YAG and Dy-Tb:YAG at different wavelengths. (a) 464-482 nm, the inset is enlarged image at 477 nm; (b) 750-765 nm, the inset is enlarged image at 761 nm

图 9 Dy: YAG 与 Dy-Tb: YAG 的荧光光谱对比 Fig. 9 Comparison of fluorescence spectra of Dy: YAG and Dy-Tb: YAG

图10 Dy: YAG and Dy-Tb: YAG 的荧光光谱对比 Fig. 10 Comparison of fluorescence spectra of Dy: YAG and Dy-Tb: YAG

粒子再通过自发辐射跃迁至基态。这一过程也会导 致激光上能级⁴F_{9/2}的寿命淬灭,对激光输出的稳定 性产生不利影响。

5 结 论

通过 Dy³⁺、Tb³⁺离子双掺杂的方式,首次在氧 化物基质 YAG 晶体中获得了 582.1 nm 黄光激光 输出;利用偏振合束原理将泵浦功率提高至 4.6 W, 增加了晶体所吸收的泵浦功率; Tb^{3+} 的掺杂使 $Dy^{3+}:{}^{6}H_{13/2}$ 与 $Tb^{3+}:{}^{7}F_{4}$ 之间发生了共振能量转 移,加速了激光下能级的粒子数消耗。实验结果表 明 Dy^{3+} 离子的激光上能级也通过共振的方式转移 了一部分能量至 $Tb^{3+}:{}^{5}D_{4}$ 能级,且 Tb^{3+} 离子的引 入增加了晶体内掺杂离子的浓度,加剧了 Dy^{3+} 离子 间的交叉弛豫过程,从而进一步减小 $Dy^{3+}:{}^{4}F_{9/2}$ 的 能级寿命。下一步的工作将对 Dy^{3+} 与 Tb^{3+} 离子的 掺杂比例进行优化,以减小非辐射过程对激光上能 级寿命的影响。

参考文献

- Davis K B, Mewes M O, Andrews M R, et al. Bose-Einstein condensation in a gas of sodium atoms [J].
 Physical Review Letters, 1995, 75(22): 3969-3973.
- [2] Kapoor V, Karpov V, Linton C, et al. Solid state yellow and orange lasers for flow cytometry [J]. Cytometry Part A, 2008, 73A(6): 570-577.
- [3] Yamagata K, Suetsugu R, Wakayama T. Longterm, six-dimensional live-cell imaging for the mouse preimplantation embryo that does not affect full-term development [J]. Journal of Reproduction and Development, 2009, 55(3): 343-350.
- [4] Beintema M R, Oosterhuis J A, Hendrikse F.
 Yellow dye laser thermotherapy of choroidal neovascularisation in age related macular degeneration
 [J]. The British Journal of Ophthalmology, 2001, 85 (6): 708-713.
- [5] McCoy S E. Copper bromide laser treatment of facial telangiectasia: results of patients treated over five years[J]. Lasers in Surgery and Medicine, 1997, 21 (4): 329-340.
- [6] Yadav N K, Jayadev C, Mohan A, et al. Subthreshold micropulse yellow laser (577 nm) in

chronic central serous chorioretinopathy: safety profile and treatment outcome [J]. Eye, 2015, 29 (2): 258-265.

[7] Yang J M, Tan H M, Tian Y B, et al. All-solid-state doubly resonant intracavity sum-frequency 578 nm yellow laser with KTP type II phase matching [J]. Chinese Journal of Lasers, 2016, 43 (10): 1001010.
杨建明,檀慧明,田玉冰,等. 全固态双共振 KTP II

类相位匹配腔内和频 578 nm 黄激光器[J]. 中国激光, 2016, 43(10): 1001010.

- [8] Yang J M, Tan H M, Gao J, et al. Noise characteristics of LDA pumped laser by intracavity sum-frequency generation with LBO [J]. Chinese Journal of Lasers, 2015, 42(10): 1002003.
 杨建明,檀慧明,高静,等. LDA 抽运腔内 LBO 和频激光器噪声特性分析[J]. 中国激光, 2015, 42 (10): 1002003.
- [9] Yao W M, Gao J, Zhang L, et al. Continuous-wave yellow-green laser at 0. 56 μm based on frequency doubling of a diode-end-pumped ceramic Nd : YAG laser[J]. Applied Optics, 2015, 54(18): 5817-5821.
- [10] Gao J, Dai X J, Zhang L, et al. All-solid-state continuous-wave yellow laser at 561 nm under in-band pumping [J]. Journal of the Optical Society of America B, 2013, 30(1): 95-98.
- [11] Wang C, Zhang X Y, Wang Q P, et al. Extracavity pumped BaWO₄ anti-Stokes Raman laser[J]. Optics Express, 2013, 21(22): 26014-26026.
- [12] Malinowski M, Myziak P, Piramidowicz R, et al. Spectroscopic and laser properties of LiNbO₃ : Dy³⁺ crystals[J]. Acta Physica Polonica A, 1996, 90(1): 181-189.
- [13] Fujimoto Y, Ishii O, Yamazaki M. Yellow laser oscillation in Dy³⁺-doped waterproof fluoro-aluminate glass fibre pumped by 398.8 nm GaN laser diodes
 [J]. Electronics Letters, 2010, 46(8): 586.
- [14] Bowman S R, O' Connor S, Condon N J. Diode pumped yellow dysprosium lasers [J]. Optics Express, 2012, 20(12): 12906-12911.
- [15] Metz P W, Moglia F, Reichert F, et al. Novel rare earth solid state lasers with emission wavelengths in the visible spectral range [C] // 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC, May 12-16, 2013, Munich, Germany. New York: IEEE, 2013: 14252640.

- [16] Bolognesi G, Parisi D, Calonico D, et al. Yellow laser performance of Dy³⁺ in co-doped Dy, Tb: LiLuF₄ [J]. Optics Letters, 2014, 39 (23): 6628-6631.
- [17] Ju Q J, Shen H, Yao W M, et al. Laser diode pumped Dy: YAG yellow laser[J]. Chinese Journal of Lasers, 2017, 44(4): 0401004.
 鞠乔俊,沈华,姚文明,等.半导体激光抽运 Dy: YAG 黄光激光器[J].中国激光, 2017, 44(4): 0401004.
- [18] Grünberg P, Hüfner S, Orlich E, et al. Crystal field in dysprosium garnets [J]. Physical Review, 1969, 184(2): 285-293.
- [19] Wegh R T, Meijerink A. Spin-allowed and spinforbidden 4fⁿ ↔ 4fⁿ⁻¹5d transitions for heavy lanthanides in fluoride hosts[J]. Physical Review B, 1999, 60(15): 10820-10830.
- [20] Lupei A, Lupei V, Gheorghe C, et al. Spectroscopic characteristics of Dy³⁺ doped Y₃ Al₅ O₁₂ transparent ceramics[J]. Journal of Applied Physics, 2011, 110 (8): 083120.
- [21] Bowman S R, Condon N J, O'Connor S, et al.
 Diode-pumped dysprosium laser materials [J].
 Proceedings of SPIE, 2009, 7325: 732507.
- [22] Xu X D, Hu Z W, Li R J, et al. Optical spectroscopy of Dy³⁺-doped CaGdAlO₄ single crystal for potential use in solid-state yellow lasers [J]. Optical Materials, 2017, 66: 469-473.
- [23] Jiang T H, Chen Y J, Lin Y F, et al. Spectroscopic properties of Dy³⁺-doped Na₂Gd₄ (MoO₄)₇ crystal
 [J]. Journal of Luminescence, 2018, 199: 133-137.
- [24] Liu B, Shi J J, Wang Q G, et al. Crystal growth and yellow emission of Dy: YAlO₃ [J]. Optical Materials, 2017, 72: 208-213.
- [25] Metz P W. Visible lasers in rare earth-doped fluoride crystals [D]. Hamburg: der Universität Hamburg, 2014.
- [26] Huang R S, Zhang P X, Huang X B, et al. Enhanced 573 nm yellow emissions of Dy³⁺ via Tb³⁺ deactivation in Na₂Gd₄ (MoO₄)₇ crystal [J]. Optical Materials Express, 2017, 7(10): 3673-3679.
- [27] Metz P W, Marzahl D T, Majid A, et al. Efficient continuous wave laser operation of Tb³⁺-doped fluoride crystals in the green and yellow spectral regions [J]. Laser & Photonics Reviews, 2016, 10 (2): 335-344.